

Water Quality Monitoring in the Chindwin River Basin: Capacity building, State, and Challenge

Ms. Khin Ohnmar Htwe(MEI) Dr.. Thanapon Piman (SEI)

World Water Day 2017's Celebration, 14th March 2017,

Nay Pyi Taw, Myanmar

Content

- Why water quality monitoring in 1. **Chindwin Basin?**
- 2. Capacity building and monitoring methodology
- 3. Current status and key findings
- 4. Challenges and recommendations

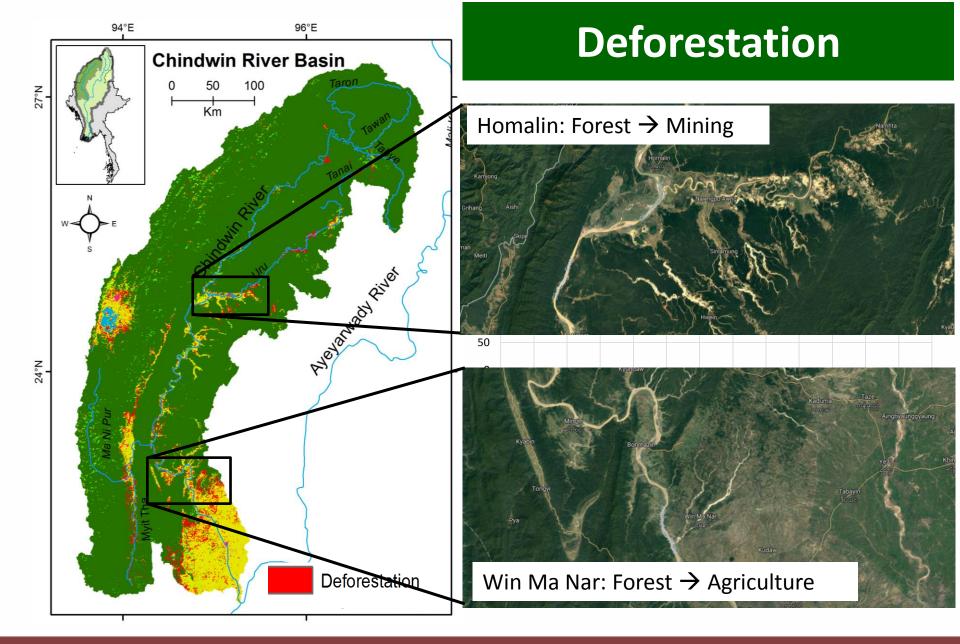
Why water quality monitoring in Chindwin Basin?

- Critical concern from the stakeholder engagement and consultation meetings
- Rapid development in the region, particularly
 - Mining expansion
 - Deforestation
- Sharing river water use by different sectors
- Lack of capacity in monitoring health of river

Consultation meeting in Nov 2014

Riverbed dredging for gold mining in Uru River

Riverbank mining in Uru River


Hillside mining in Uru River

Mining activities

Gold Mining Type	Potential impact on water quality and sedimentation
River bed dredging	Highest
Riverbank mining	High
Hillside mining	High, if the runoff reaches the river
Pit mining (inland)	Lower
L	

Pit mining near Chindwin River, Homalin township

Institutional involvement in water quality

Institution	Main Role in Water Quality
DWIR – Directorate of Water Resources in Improvement of River Systems	Water quality in the river channel
ID – Irrigation Department	Water quality for irrigation Water quality in reservoirs
WRUD – Water Resources Utilization Department	Water quality (river or well) for rural villages Water quality for groundwater irrigation projects
ECD – Environmental Conservation Department and Department of Occupational Health	Industrial and domestic sewage contamination
City development council	Quality of water supply
DMH	Water quality of rainfall (acidity)

Objective of the study

- To build capacity of local NGOs and local government agencies
- To understand current situation of water quality in Chindwin river basin
- To support developing water quality management and monitoring strategy in Chindwin river basin

Capacity building (1/3)

Approach

- Training
- On field coaching
- Knowledge exchange with Pollution Control Department (PCD) in Thailand

Target groups

• Local NGO (MEI)

• Local government agencies (i.e. DWIR, ECD, IWUMD)

Capacity building (2/3)

Knowledge exchange between MEI and Pollution Control Department (PCD) in Thailand, May 2016

PCD conducted hands-on training for MEI on water sampling at Klong Prapa canal about basic water analysis in Thailand, May 2016

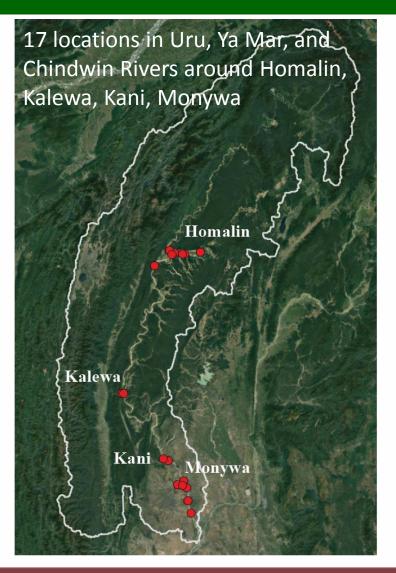
Capacity building (3/3)

 PCD and SEI staffs supervised MEI team on sampling and preservation techniques in the Chindwin River in Myanmar, May 2016

 MEI, PCD and SEI staffs provided training to Myanmar agencies on water quality monitoring and sampling in Monywa, Myanmar, September 2016

Methodology of the study

- 1. Literature review
- Stakeholders consultations (Nov 2014, May 2015)
- 3. Data collection from government departments
- 4. Household survey: 600 households in Homalin, Kani, Monywa
- 5. Focus group Interviews
- 6. 4 times for field monitoring during dry and wet season in 2015 and 2016 (23 parameters)
 - In-situ measurements
 - Laboratory tests
 - Portable test kits



Monitoring parameters and locations

Testing Methods	Measuring parameters
In situ	• Water Temperature
measurement	• Air Temperature
(8 parameters)	• Rapid Dissolved Oxygen (RDO)
	Oxidation Reduction Potential (ORP)
	• Electrical Conductivity (EC)
	• Salinity
	Total Dissolved Solid (TDS)
Laboratory	• Oil and grease
measurement	• Total Nitrogen (TN)
(14 parameters)	• Total Phosphorus (TP)
	Chemical Oxygen Demand (COD)
	Total Suspended Solid (TSS)
	• Turbidity
	• Total hardness
	Total Dissolved Solid (TDS)
	• Arsenic (As)
	• Cyanide (CN)
	• Lead (Pb)
	• Mercury (Hg)
	• Copper (Cu)
	• Iron (Fe)
Portable test kits	• Bacteria
(5 parameters)	• Lead (Pb)
	• Mercury (Hg)
	• Copper (Cu)
	• Iron (Fe)

Steps : Water quality sampling & test

- 1. Planning
- 2. Equipment preparation
- 3. Water sampling
- 4. Field testing
- 5. Sampling preservation
- 6. Packing and transportation
- 7. Laboratory test
- 8. Result analysis

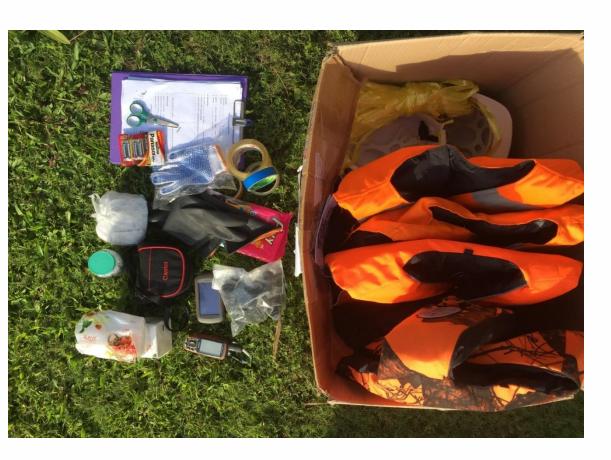
Step 1: Planning

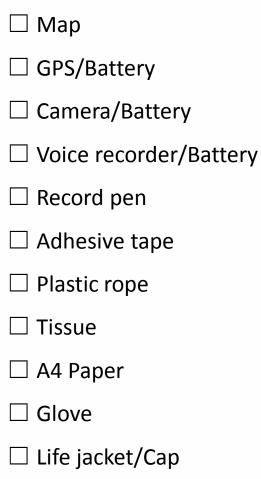
Research/ Project

	A A A A A A A A A A A A A A A A A A A		1
21		1 r	 5
and the stand	AL	and and a second	
	r	S. 1	
	5		
A CONTRACTOR	m		

✓ Methods
✓ Periods
✓ Sample Numbers
✓ Parameters
✓ Containers
✓ Locations

Testing Methods	Measuring parameters
In situ	• Water Temperature
measurement	Air Temperature
(8 parameters)	Rapid Dissolved Oxygen (RDO)
	• Oxidation Reduction Potential (ORP)
	Electrical Conductivity (EC)
	Salinity
	Total Dissolved Solid (TDS)
Laboratory	Oil and grease
measurement	Total Nitrogen (TN)
(14 parameters)	Total Phosphorus (TP)
	Chemical Oxygen Demand (COD)
	Total Suspended Solid (TSS)
	• Turbidity
	Total hardness
	Total Dissolved Solid (TDS)
	Arsenic (As)
	Cyanide (CN)
	• Lead (Pb)
	• Mercury (Hg)
	• Copper (Cu)
	• Iron (Fe)
Portable test kits	• Bacteria
(5 parameters)	• Lead (Pb)
	• Mercury (Hg)
	• Copper (Cu)
	• Iron (Fe)





Step 2: Equipment preparation (1)

General equipment

□ Cutter

15

Step 2: Equipment preparation (2)

B. Site conditions


- River width: (m) River depth : Water color: (m)
- 2. Weather condition: No rain Rain Windy
- 3. Human activities nearby: Rural Urban Agriculture Industry Others:

C. Water Sampling

- 1. Location: () Right bank () Middle () Left bank () Bridge
- 2. Method:
- () Grab sample Number of points for water sampling:_____ () Composite sample Number of points for water sampling: 3. Locations in the river:

Field datasheet

C. In situ measurements:

	Grab sample		Composite sample
1.	Water Temperature (°C):	1.	Water Temperature (°C):
2.	pH (Insitu): pH (meter):	2.	pH (Insitu): pH (meter):
3.	EC (microSiemens/cm2):	3.	EC (microSiemens/cm2):
4.	ORP (mV):	4.	ORP (mV):
5.	Dissolved Oxygen (mg/l):		Dissolved Oxygen (mg/l):
6.	Salinity (psu):	6.	Salinity (psu):
7.	TDS (ppm):	7.	TDS (ppm):
	Air temperature (°C):	8.	Air temperature (°C):
9.	Turbidity (NTU):	9.	Turbidity (NTU):

Detail of containers for laboratory test for each site

HDPE	Label	Acid	Parameter	Lab
1	White	No	Hardness, TDS	ISOTECH
2	White	No	TSS	SGS
3	Yellow	HNO3	Arsenic, Mercury, Lead	ID
4	Yellow	HNO3	Iron	ISOTECH
5	Blue	NaOH	Cyanide	ISOTECH
Glass	Label	Acid	Parameter	Lab
1	Pink	H2SO4	TN, TP, COD	SGS
2	Pink	H2SO4	Oil & grease	SGS
3	Yellow	HNO3	Copper	SGS

Lab	No of bottles	No of parameters	Parameters	Color
ID	1 (HDPE)	3	Arsenic, Mercury, Lead	1 Yellow
ISOTECH	3 (HDPE)	4	Hardness, TDS, Iron, Cyanide	1 White, 1 Yellow, 1 Blue
SGS	1 (HDPE) + 3 (Glass)	6	TN, TP, COD, Oil & grease, Copper, TSS	1 White, 2 Pink, 1 Yellow

Locations

2

No	Site	City	Abbreviation	Lon	Lat
1	Homalin	Homalin	HL	94.90803	24.860
2	Nam Taw	Homalin	NT	95.29567	24.836
3	Uru downstream at confluence	Homalin	UD	94.96922	24.832
4	Naung Po Aung	Homalin	NPA	95.06944	24.813
5	Nansakar	Homalin	NSK	95.09961	24.812
6	Mokekalae	Homalin	MKKL	94.93389	24.811
7	Shwe Pyi Aye Town	Homalin	SPAT	94.72061	24.682
8	Kalewa Town_upstream	Kalewa	KLWU	94.30474	23.205
9	Kalewa Town_downstream	Kalewa	KLWD	94.32642	23.205
10	Kani_upstream	Kani	KNU	94.82934	22.446
11	Kani_downstream	Kani	KND	94.88638	22.424
	Upstream				
12	Monywa_ChindwinBridge	Monywa	UMB	95.08022	22.188
13	Ya Mar River - Bridge	Monywa	YMB	95.00736	22.139
14	Ya Mar River - Downstream	Monywa	YMD	95.06868	22.137
15	Monywa	Monywa	MW	95.12147	22.109
16	CHR_down2	Monywa	CHRD	95.13992	21.95
17	Bridge - Chindwin confluence	Monywa	BCC	95.17758	21.80

1

Step 2: Equipment preparation (3)

Field measurement and test kits

In Situ measurement

- □ smar TROLL Multiparameter
- □ Battery for smar TROLL
- □ Mobile phone/battery
- □ KNOW water for calibration

Turbidity measurement

 \Box Turbidity meter

pH measurement

- □ pH meter
- 🗆 pH paper

Test kits

Mercury
Lead
Copper
Iron

□ Iron □ Bacteria

Step 2: Equipment preparation (4)

Lab measurement

Sampling

- □ Sampler
- □ Plastic bucket (4 litter)
- \Box Ladle rope
- 🗆 Funnel
- 🗆 Bowl

Sample containers

- 🗆 1000 ml HDPE bottle
- 1000 ml Glass bottle
- \Box Spare glass bottle cap
- □ 1000 ml Drinking bottle

Bottle labels

- $\hfill\square$ White label for unpreserved samples
- □ Pink label for preserved with Sulfuric acid (H2SO4)
- $\hfill\square$ Yellow label for preserved with Nitric acid (HNO3)
- $\hfill\square$ Blue label for preserved with others
- □ Label pen (permanent)

Step 2: Equipment preparation (5)

Preservation acids

- \Box Sulfuric acid (H2SO4)
- □ Nitric acid (HNO3)
- □ Sodium hydroxide (NaOH)
- \Box Acid box
- **Distilled** water
- \Box Rubble pipette bulb/tube
- Groves

Ice boxes

Large ice box for 24 bottles

🗌 Plastic box (green color)

Ice bucket

Big plastic bag

🗌 Hammer

□ Label for ice boxes to send samples to Yangon

Step 2: Equipment preparation (6)

Transportation

Step 3: Water Sampling

Before Sampling

- General safety inspection of the sampling locations
- Use equipment with good conditions with regular maintenance
- CLEAN sample containers
- Prepare ice or cool packs, cooler or container to store samples in cold condition
- Label sample containers: plastic/glass bottles
- Using water proof and sturdy labels
- Write information on the sample bottle using waterproof pen

Step 4: Field testing

In Situ test

Turbidity test

pH test

Test kits

Step 5: Samples preservation

Preservation Method and Holding time Preservation

Ne	Parameters	Examination method	Laborate m.	Dura a musti a m time a	Preservation	
No	Parameters Examination method Laboratory	Laboratory	Preservation time	Chemical	Size (ml)	
2	Oil and grease	АРНА	SGS	28 day	add H2SO4 or HCl to p H <2 $$	1000
3	Total Suspended Solid (TSS)	АРНА	SGS	no limit time	Refrigerate	1000
4	Copper	АРНА	SGS	6 months	add HNO3 to p H <2	100
5	Total Nitrogen (organic)	АРНА	SGS	7 day		
6	Total Phosphorus	АРНА	SGS	28 day	add H_2SO_4 to p H <2	1000
7	Chemical Oxygen Demand (COD)	АРНА	SGS	7 day		
9	Hardness	EDTA Titrimetric	ISO Tech	3 day	Refrigerate	
10	Cyanide	Colorimertic	ISO Tech	3 day	Add NaOH, to pH>10	1000
11	Iron	Phenanthroline	ISO Tech	3 day	Add HNO3 to p H <2	1000
12	Total Dissolved Solid (TDS)	sens ion5 Conductivity Meter (HACH)	ISO Tech	3 day	Refrigerate	
16	Arsenic	AAS	Irrigation Dept	3 day		
17	Mecury	AAS	Irrigation Dept	3 day	Add HNO3 to p H <2	1000
18	Lead	AAS	Irrigation Dept	3 day		

Step 5: Samples preservation

Samples preservation for laboratory test

Step 6: Packing and transportation

- Always keep temperature < 4C with ice in ice boxes
- Avoid leakage with plastic bags
- Label the ice boxes

Step 7: Laboratory test

State of water quality in 2016

Homalin

Monywa

Key findings: Homalin

Chindwin at Homalin (DWIR)

Mokekalae

Uru Downstream Naung Po Aung Namsakar

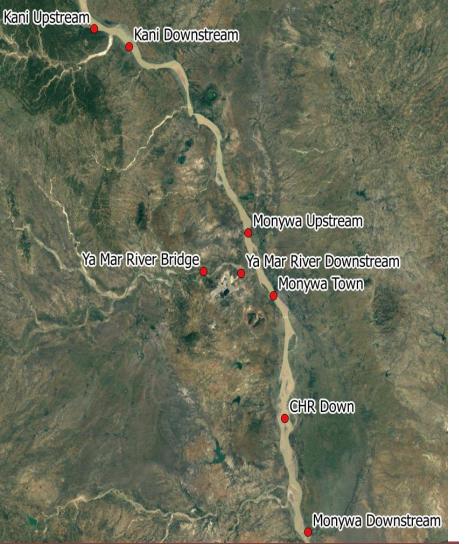
- Heavy metals including Arsenic, Iron, Copper and were detected in the dry and wet seasons while Mercury was detected in the dry season.
- Observed values of **Iron** were higher than the WHO acceptable standard of drinking water
- The observed values of **turbidity**, **Total Suspended Solid and Total Phosphorus** were also higher than the WHO acceptable standard of drinking water at all locations, particularly in the dry season.
- The **bacteria** were detected at all locations.

SEI Stockholm Environment Institute

Nam Taw

Key findings: Kalewa

- Heavy metals including Arsenic and Iron were detected at both locations in the dry and wet seasons.
- Observed values of **Iron** were higher than the WHO acceptable standard of drinking water at both locations.
- The observed values of turbidity, Total Suspended Solid and Total Phosphorus were also higher than the WHO acceptable standard of drinking water at all locations, particularly in the dry season.
- The **bacteria** were detected at all locations.



Key findings: Monywa and Kani

STOCKHOLM

- Heavy metals including Arsenic, Copper, Iron and Mercury were detected at all locations and Lead was detected at Kani downstream and Ya Mar River and Monywa town.
- Observed values of Iron were higher than the WHO acceptable standard of drinking water at all location in the dry and wet seasons
- The observed values of turbidity and Total **Suspended Solid** were also higher than the WHO acceptable standard of drinking water at all locations, particularly in the dry season.
- In Ya Mar River, observed values of Electric **Conductivity** in the dry season were higher than the WHO acceptable standard of drinking water.
- The **bacteria** were detected at all locations.

Key challenges

- 1) Resources and capacity: Limited
- 2) Logistic: Take long time
- 3) Measurement techniques, tools and laboratories: Increase more parameters for heavy metals and improve water samples preservation and laboratory standards
- Data reliability: Using different techniques and methods
- 5) Water quality standard/classification for surface and groundwater: No standard
- 6) Institution: Need more coordination and data sharing

Recommendations (1/3)

- 1) Water quality monitoring should continue at strategic locations, particularly for
 - 1) detected heavy metals including Arsenic, Iron, Mercury, Copper, and Lead
 - other parameters such as turbidity, Total Suspended Solid and Total Phosphorus which have values higher than the WHO acceptable standard of drinking water
- 2) Water treatment systems for drinking water are required at all locations to remove turbidity, total suspended solid, total phosphorus, iron and mercury from raw water sources in Chindwin, Uru and Ya Mar Rivers.
- 3) Further studies and investigations are recommended on sources of water pollutions and consequence impacts on human and environmental health.

Recommendations (2/3)

- 4) Awareness raising to relevant stakeholders (local people, farmers, private sectors, etc.) is necessary since many people living in Chindwin Basin are using water directly from the rivers and other sources without any treatment. It is important that they know the state of water quality in the basin for proper water uses and also basic household-level water treatment methods.
- 5) Engagement with and building relevant capacities of local agencies and communities in water quality monitoring will help increase number of water samplings and thus improve the accuracy of future water quality study in Chindwin River Basin.
- 6) Chindwind RBO can help to coordinate water quality issues among different institutions in Chindwin River Basin

Recommendations (3/3)

Stakeholders	Issues	Action needs
Central and Regional Government	Many institutions working on water quality, sometimes overlapping work	Coordination and data sharing between institutions Improvement of water quality monitoring system
Local government and local communities	Need to understand the risk faced by the villages, and how to deal with these risks	Capacity and campaigns to raise awareness about water quality issues
Private sectors	Need to decrease pollution and avoid contact with contaminated waters	Water treatment systems Pollution control systems Regulations
Universities	Need to understand status, pollution sources and potential impacts	Detail studies and providing evident information to decision makers

Way forwards

Empowering Civil Society and Governmental Agencies to Mainstream Biodiversity and Ecosystem Service Values into Development Plans for the Chindwin River Basin, Myanmar

Apr 2017- Mar 2019 (2 years)

under Critical Ecosystem Partnership Fund (CEPF)

Contact:

Ms. Khin Ohnmar Htwe(MEI): khinohnmarhtwe@gmail.com Dr.. Thanapon Piman (SEI): thanapon.piman@sei-international.org

THANK YOU

